




MiniSKiiP® 3

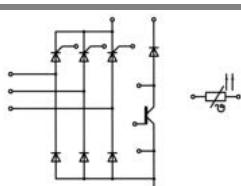
3-phase bridge rectifier +  
brake chopper

SKiiP 39AHB16V1

## Features

- Fast Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

## Typical Applications\*


- Input bridge for inverter up to 45 kVA

## Remarks

- $V_{CEsat}$ ,  $V_F$  = chip level value

| Absolute Maximum Ratings             |                                                               | $T_s = 25^\circ\text{C}$ , unless otherwise specified |  |                  |
|--------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|--|------------------|
| Symbol                               | Conditions                                                    | Values                                                |  | Units            |
| <b>IGBT - Chopper</b>                |                                                               |                                                       |  |                  |
| $V_{CES}$                            |                                                               | 1200                                                  |  | V                |
| $I_C$                                | $T_s = 25 (70)^\circ\text{C}$                                 | 157 (118)                                             |  | A                |
| $I_{CRM}$                            | $t_p \leq 1 \text{ ms}$                                       | 280                                                   |  | A                |
| $V_{GES}$                            |                                                               | $\pm 20$                                              |  | V                |
| $T_j$                                |                                                               | - 40 ... + 150                                        |  | $^\circ\text{C}$ |
| <b>Diode - Chopper</b>               |                                                               |                                                       |  |                  |
| $I_F$                                | $T_s = 25 (70)^\circ\text{C}$                                 | 167 (124)                                             |  | A                |
| $I_{FRM}$                            | $t_p \leq 1 \text{ ms}$                                       | 280                                                   |  | A                |
| $T_j$                                |                                                               | - 40 ... + 150                                        |  | $^\circ\text{C}$ |
| <b>Diode / Thyristor - Rectifier</b> |                                                               |                                                       |  |                  |
| $V_{RRM}$                            |                                                               | 1600                                                  |  | V                |
| $I_F / I_T$                          | $T_s = 70^\circ\text{C}$                                      | 121                                                   |  | A                |
| $I_{FSM} / I_{TSM}$                  | $t_p = 10 \text{ ms, sin } 180^\circ, T_j = 25^\circ\text{C}$ | 1250                                                  |  | A                |
| $i_{\text{t}}$                       | $t_p = 10 \text{ ms, sin } 180^\circ, T_j = 25^\circ\text{C}$ | 7800                                                  |  | A <sup>2</sup> s |
| $T_j$                                | Diode                                                         | - 40 ... + 150                                        |  | $^\circ\text{C}$ |
| $T_j$                                | Thyristor                                                     | - 40 ... + 125                                        |  | $^\circ\text{C}$ |
| $I_{tRMS}$                           | per power terminal (20 A / spring)                            | 160                                                   |  | A                |
| $T_{\text{stg}}$                     | $T_{\text{op}} \leq T_{\text{stg}}$                           | - 40 ... + 125                                        |  | $^\circ\text{C}$ |
| $V_{\text{isol}}$                    | AC, 1 min.                                                    | 2500                                                  |  | V                |

| Characteristics        |                                                                                           | $T_s = 25^\circ\text{C}$ , unless otherwise specified |           |               |
|------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------|---------------|
| Symbol                 | Conditions                                                                                | min.                                                  | typ.      | max.          |
| <b>IGBT - Chopper</b>  |                                                                                           |                                                       |           |               |
| $V_{CEsat}$            | $I_{Cnom} = 140 \text{ A}, T_j = 25 (125)^\circ\text{C}$                                  |                                                       | 1,7 (2)   | 2,1 (2,4)     |
| $V_{GE(\text{th})}$    | $V_{GE} = V_{CE}, I_C = 6 \text{ mA}$                                                     | 5                                                     | 5,8       | 6,5           |
| $V_{CE(\text{TO})}$    | $T_j = 25 (125)^\circ\text{C}$                                                            |                                                       | 1 (0,9)   | 1,2 (1,1)     |
| $r_T$                  | $T_j = 25 (125)^\circ\text{C}$                                                            |                                                       | 5 (7,9)   | 6,4 (9,3)     |
| $C_{ies}$              | $V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$                          |                                                       | 11,2      | nF            |
| $C_{oes}$              | $V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$                          |                                                       | 1,9       | nF            |
| $C_{res}$              | $V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$                          |                                                       | 1,5       | nF            |
| $R_{th(j-s)}$          | per IGBT                                                                                  |                                                       | 0,3       | K/W           |
| $t_{d(on)}$            | under following conditions                                                                |                                                       | 80        | ns            |
| $t_r$                  | $V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$                                       |                                                       | 40        | ns            |
| $t_{d(off)}$           | $I_{Cnom} = 140 \text{ A}, T_j = 125^\circ\text{C}$                                       |                                                       | 500       | ns            |
| $t_f$                  | $R_{Gon} = R_{Goff} = 5 \Omega$                                                           |                                                       | 100       | ns            |
| $E_{on}$               | inductive load                                                                            |                                                       | 19,9      | mJ            |
| $E_{off}$              |                                                                                           |                                                       | 17,3      | mJ            |
| <b>Diode - Chopper</b> |                                                                                           |                                                       |           |               |
| $V_F = V_{EC}$         | $I_{Fnom} = 140 \text{ A}, T_j = 25 (125)^\circ\text{C}$                                  |                                                       | 1,5 (1,5) | 1,7 (1,7)     |
| $V_{(TO)}$             | $T_j = 25 (125)^\circ\text{C}$                                                            |                                                       | 1 (0,8)   | 1,1 (0,9)     |
| $r_T$                  | $T_j = 25 (125)^\circ\text{C}$                                                            |                                                       | 3,6 (5)   | 4,3 (5,7)     |
| $R_{th(j-s)}$          | per diode                                                                                 |                                                       | 0,4       | K/W           |
| $I_{RRM}$              | under following conditions                                                                |                                                       | 210       | A             |
| $Q_{rr}$               | $I_{Fnom} = 140 \text{ A}, V_R = 600 \text{ V}$                                           |                                                       | 38        | $\mu\text{C}$ |
| $E_{rr}$               | $V_{GE} = 0 \text{ V}, T_j = 125^\circ\text{C}$<br>$di_F/dt = 4300 \text{ A}/\mu\text{s}$ |                                                       | 16,2      | mJ            |



AHB

| Characteristics       |                                                                          | $T_s = 25^\circ\text{C}$ , unless otherwise specified |            |                        |
|-----------------------|--------------------------------------------------------------------------|-------------------------------------------------------|------------|------------------------|
| Symbol                | Conditions                                                               | min.                                                  | typ.       | max.                   |
| Diode - Rectifier     |                                                                          |                                                       |            |                        |
| $V_F$                 | $I_{F\text{nom}} = 90\text{ A}$ , $T_j = 25^\circ\text{C}$               |                                                       | 1,2        | V                      |
| $V_{(TO)}$            | $T_j = 150^\circ\text{C}$                                                |                                                       | 0,8        | V                      |
| $r_T$                 | $T_j = 150^\circ\text{C}$                                                |                                                       | 4          | $\text{m}\Omega$       |
| $R_{\text{th}(j-s)}$  | per diode                                                                |                                                       | 0,5        | K/W                    |
| Thyristor - Rectifier |                                                                          |                                                       |            |                        |
| $V_T$                 | $I_{F\text{nom}} = 200\text{ A}$ , $T_j = 25\text{ (125)}^\circ\text{C}$ |                                                       | 1,65 (1,6) | V                      |
| $V_{T\text{(TO)}}$    | $T_j = 125^\circ\text{C}$                                                |                                                       | 0,9        | V                      |
| $r_T$                 | $T_j = 125^\circ\text{C}$                                                |                                                       | 3,5        | $\text{m}\Omega$       |
| $V_{GT}$              | $T_j = 25^\circ\text{C}$                                                 |                                                       | 3          | V                      |
| $I_{GT}$              | $T_j = 25^\circ\text{C}$                                                 | 150                                                   |            | $\text{mA}$            |
| $I_H$                 | $T_j = 25^\circ\text{C}$                                                 | 150                                                   |            | $\text{mA}$            |
| $I_L$                 | $T_j = 25^\circ\text{C}$                                                 | 300                                                   |            | $\text{mA}$            |
| $dv/dt_{(cr)}$        | $T_j = 125^\circ\text{C}$                                                |                                                       | 1000       | $\text{V}/\mu\text{s}$ |
| $di/dt_{(cr)}$        | $T_j = 125^\circ\text{C}$                                                |                                                       | 100        | $\text{A}/\mu\text{s}$ |
| $R_{\text{th}(j-s)}$  | per thyristor                                                            |                                                       | 0,5        | K/W                    |
| Temperature Sensor    |                                                                          |                                                       |            |                        |
| $R_{ts}$              | $3\%$ , $T_r = 25\text{ (100)}^\circ\text{C}$                            |                                                       | 1000(1670) | $\Omega$               |
| Mechanical Data       |                                                                          |                                                       |            |                        |
| w                     |                                                                          | 95                                                    |            | g                      |
| $M_s$                 | Mounting torque                                                          | 2                                                     | 2,5        | Nm                     |

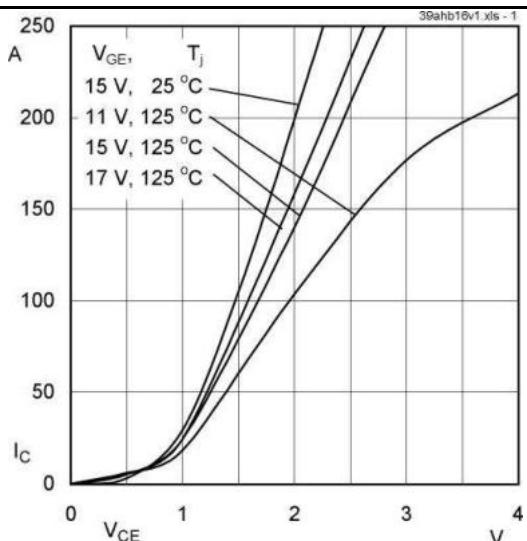



Fig. 1 Typ. output characteristic

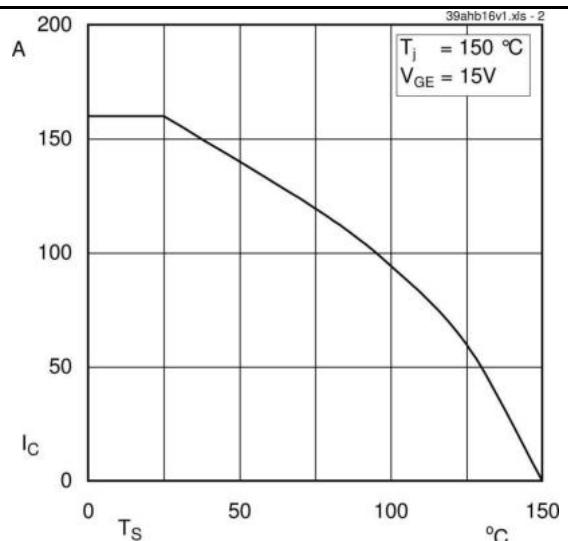



Fig. 2 Typ. rated current vs. temperature

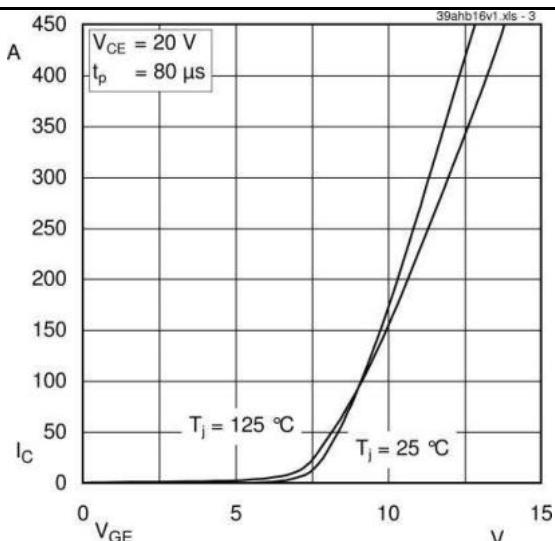



Fig. 3 Typ. transfer characteristic

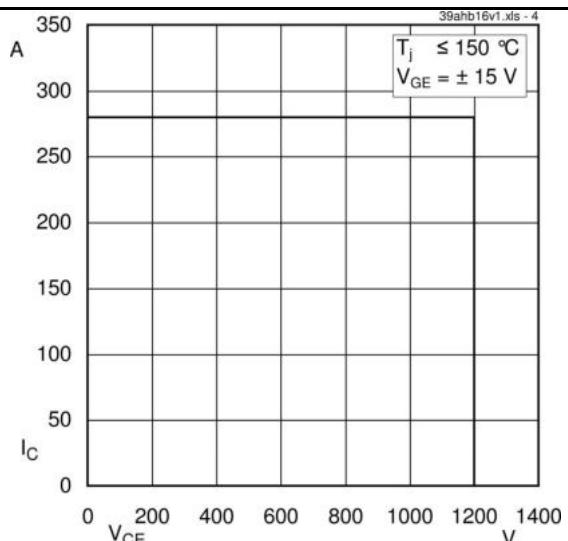



Fig. 4 Reverse bias safe operating area

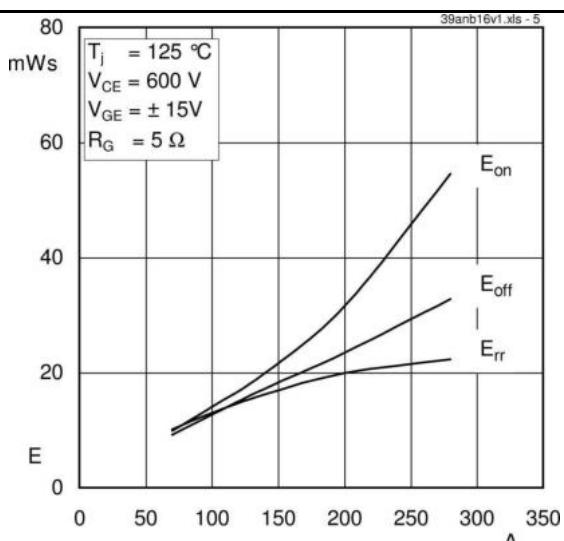



Fig. 5 Typ. Turn-on /-off energy = f ( $I_C$ )

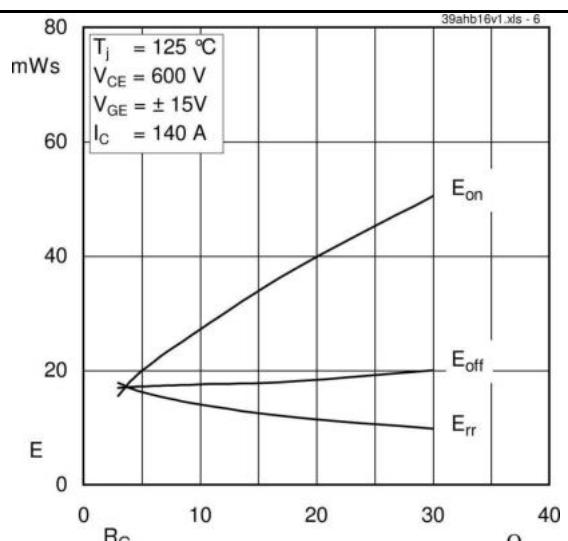
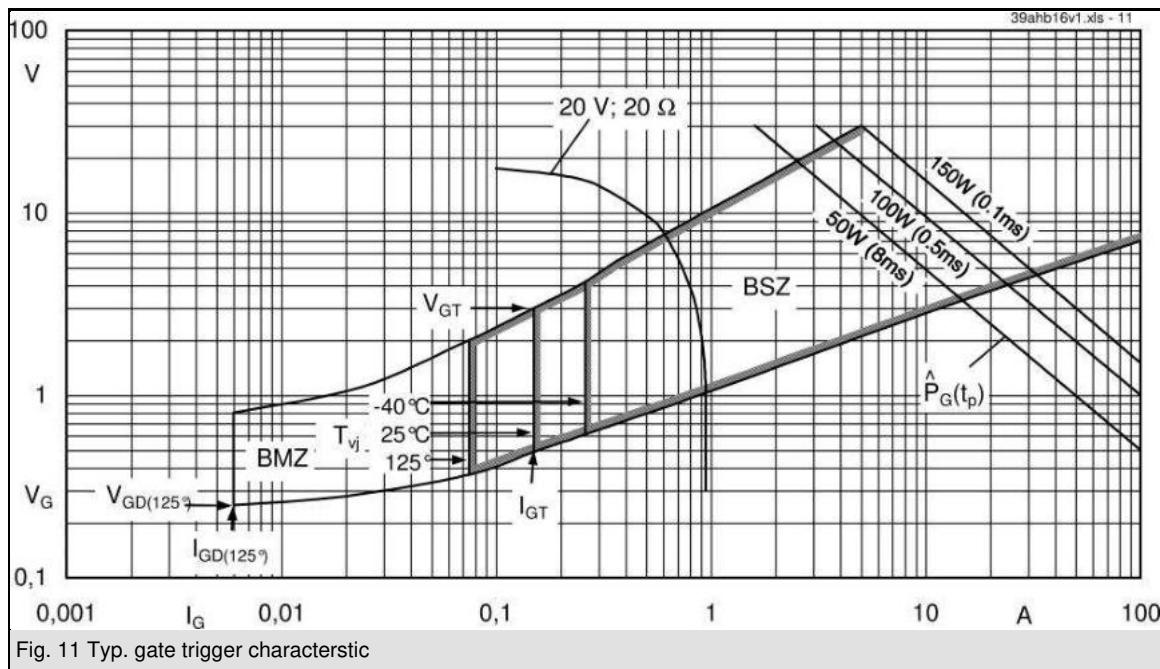
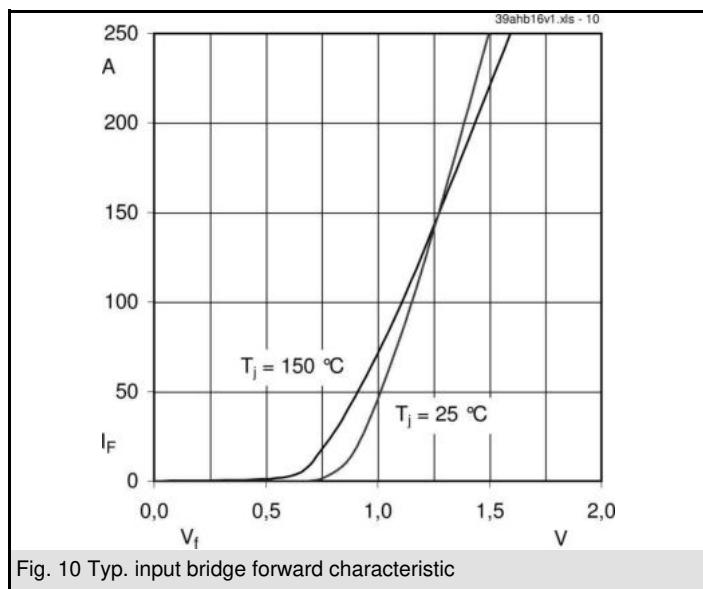
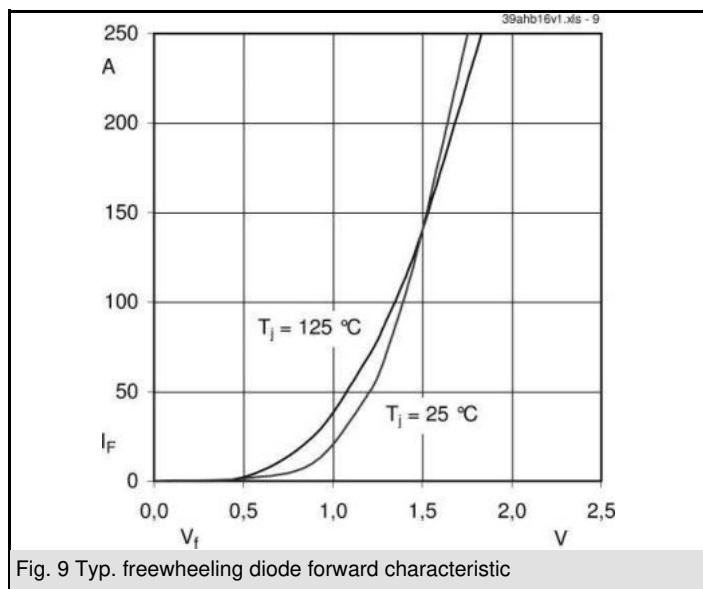
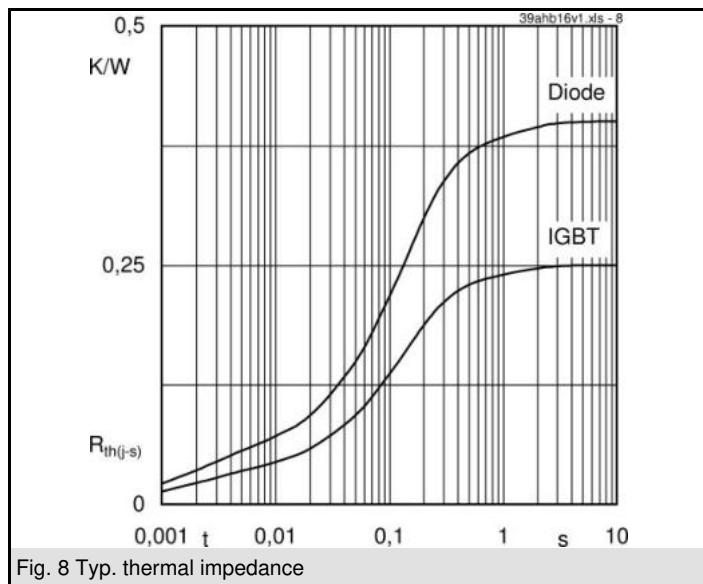
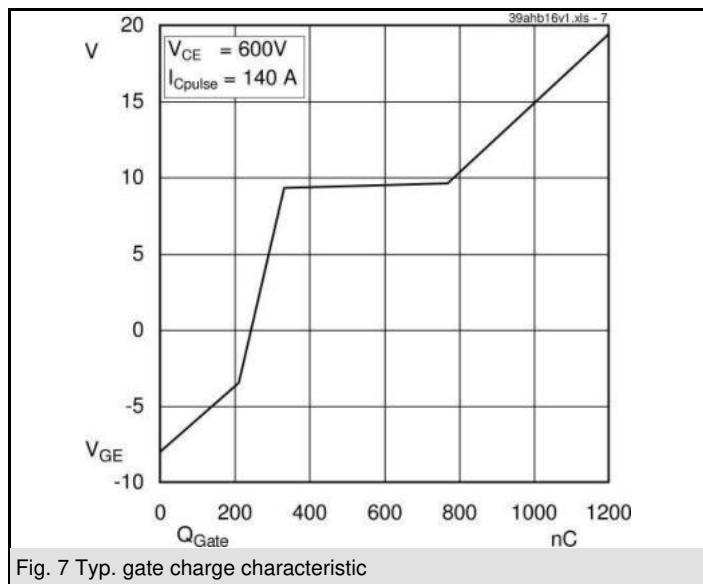
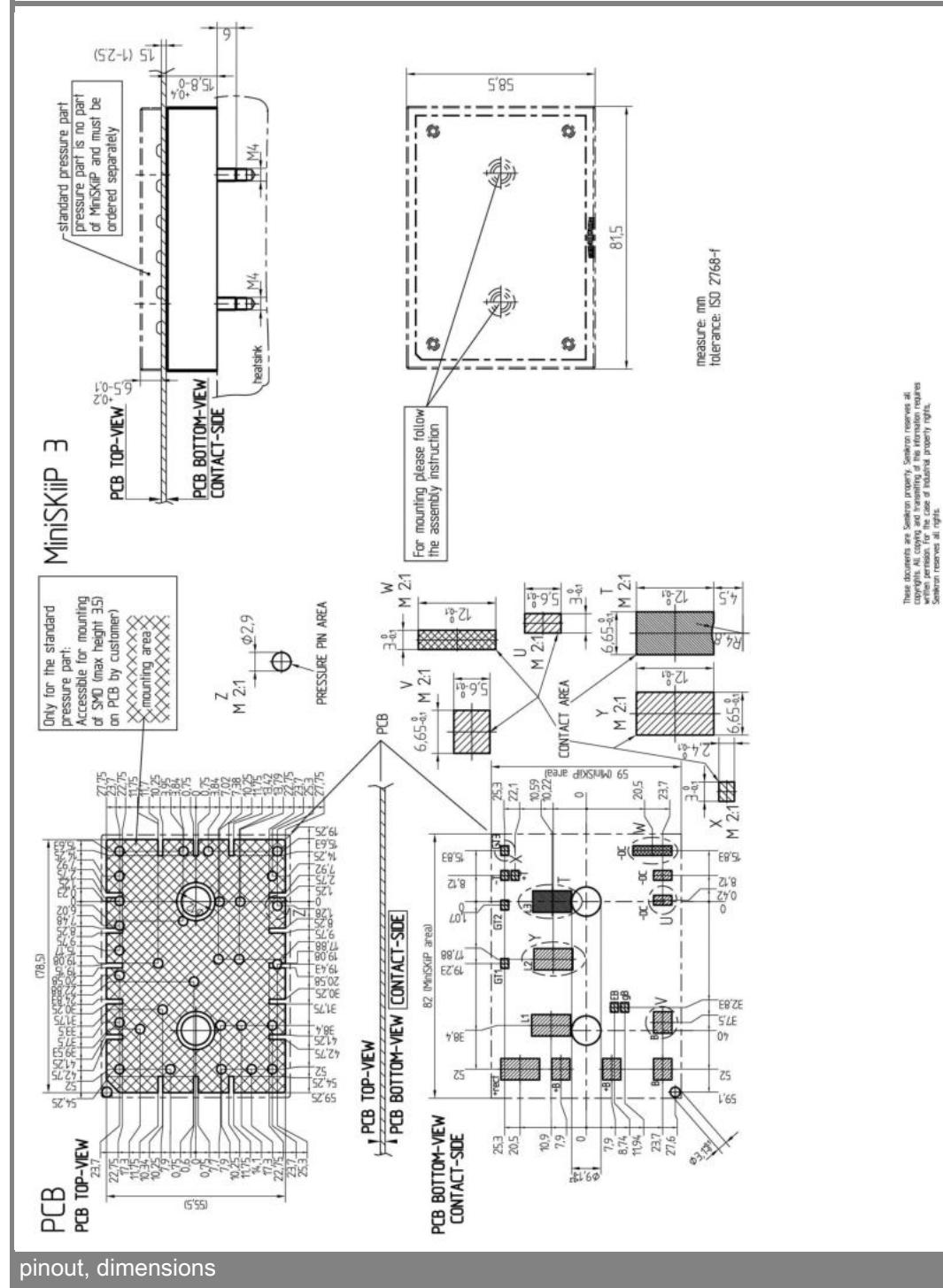
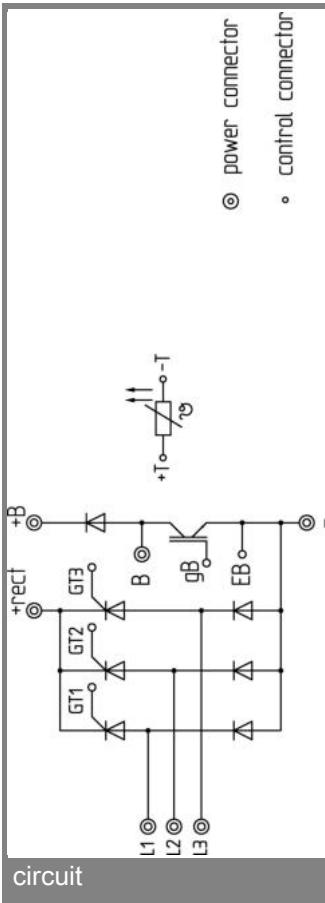










Fig. 6 Typ. Turn-on /-off energy = f ( $R_G$ )

# SKiiP 39AHB16V1





This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

\* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.